Avenues for genetic modification of radiation use efficiency in wheat.
نویسندگان
چکیده
Radiation use efficiency (RUE) of a crop is a function of several interacting physiological phenomena, each of which can be tackled independently from the point of view of genetic improvement. Although wheat breeding has not raised RUE substantially, theoretical calculations suggest room for improvement. Selection for higher rates of leaf photosynthesis at saturating light intensities (Amax) has not resulted in improved RUE of crops, perhaps in part because most leaves in a canopy are not light-saturated. However, higher Amax may be observed as a pleiotropic effect of other yield-enhancing genes (e.g. genes for reduced height). Genetic transformation of Rubisco to double its specificity for CO2 would theoretically increase Amax by perhaps 20%, and some evidence suggests that photosynthesis at sub-saturating light intensities would also be improved. However, photo-protection may be jeopardized if capacity for oxygenase activity is impaired. Photosynthetic rate of the whole eanopy can be enhanced by manipulation of leaf angle, which is under relatively simple genetic control, and possibly by manipulating leaf-N distribution throughout the canopy. Genetic diversity for adaptation of lower canopy leaves (e.g. changes in chlorophyll a:b ratio) to reduced light intensity observed in some crops needs to be investigated in wheat. Improved RUE may be achieved by increasing sink demand (i.e. kernel number) if excess photosynthetic capacity exists during grain filling, as suggested by a number of studies in which source-sink balance was manipulated. Some evidence suggests that improved sink strength may be achieved by lengthening the duration of the period for juvenile spike growth. Balancing source- and sink-strength is a complex genetic challenge since a crop will change between source and sink limitation as conditions vary during the day, and with phenological stage. Improved RUE will be partly a function of a genotype's ability to buffer itself against changes in its environment to match the demand imposed by its development. Analysis of the physiological basis of genotype by environment interactions may indicate avenues for genetic improvement. The genetic control of photosynthetic regulation may be elucidated in the future through the application of genomics. However, given a lack of specific knowledge on the genetic basis of RUE, empirical selection is currently the most powerful tool for detecting favourable genetic interactions resulting from crosses between lines with superior photosynthetic traits and other high yielding characteristics. Selection for superior segregants can be accelerated using rapidly measured physiological selection traits, such as stomatal conductance or canopy temperature depression.
منابع مشابه
Water and radiation use efficiency in different developmental stages in four bread wheat cultivars under moisture stress conditions
Abstract This research was conducted in Toroq Experimental field station, Mashhad, Iran, for two successive cropping seasons (2000-2002), using split plot experimental design based on complete randomized blocks with three replications. Moisture stress treatments (at seven levels) were assigned to main plots, including: D1 ( full irrigation), D2 (no irrigation from one-leaf to double ridge) st...
متن کاملEffects of sowing time and rate on crop growth and radiation use efficiency of winter wheat in the North China Plain
Crop depends on its canopy to intercept solar radiation to drive both assimilation and water, nutrient absorption for its growth. Field experiments, involving three sowing time and three sowing rate, were conducted at Luancheng Station to investigate the effects of canopy size and development on crop growth and radiation use efficiency (RUE) of winter wheat during 2009/2010 and 2010/2011 gr...
متن کاملStudy of genetic diversity in bread wheat germplasm using nitrogen uptake and nitrogen use efficiency characteristics
In order to evaluate the traits related to nitrogen utilization and to identify the superior genotypes, 33 bread wheat landraces along three check cultivars of Chamran and Koohdasht (from Iran) and Gobustan (from the Republic of Azerbaijan) were studied in simple lattice statistical design with two replications under two treatments of non-usage and application of 200 kg/ha ammonium nitrate fert...
متن کاملEfficiency of anchored and non-anchored ISSR markers to estimate genetic diversity among bread wheat cultivars
DNA markers are integrally connected to the success of molecular breeding and are fundamentally required by breeders to be able to, a. identify new gene sources in the available biodiversity, b. select parents in order to increase heterosis, c. decrease the number of backcross generations for gene introgression breeding programs, and d. carry out marker-assisted selection (MAS). The present re...
متن کاملResponses of above and below-ground traits of wheat wild relative (Aegilops tauschii) and bread wheat (Triticum aestivum L.) to imposed moisture stress
The narrow genetic variation of bread wheat is one of the limitations to improve it for drought-tolerance. The research carried out to study the responses of different genotypes and traits to imposed moisture stress. The plant material comprised of 10 Aegilops tauschii accessions as well as a tolerant (BW2) and a susceptible (BW1) bread wheat cultivar. To assess the root and shoot-traits, two s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of experimental botany
دوره 51 Spec No شماره
صفحات -
تاریخ انتشار 2000